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The purpose of this work is to calculate the vibrational modes of an elastically anisotropic sphere embedded
in an isotropic matrix. This has important application to understanding the spectra of low-frequency Raman
scattering from nanoparticles embedded in a glass matrix. First some low-frequency vibrational modes of a free
cubically elastic sphere are found to be nearly independent of one combination of elastic constants. This is then
exploited to obtain an isotropic approximation for these modes which enables to take into account the sur-
rounding isotropic matrix. This method is then used to quantitatively explain recent spectra of gold and copper
nanocrystals in glasses.
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I. INTRODUCTION

Low-frequency inelastic light scattering by metallic nano-
particles, which is due to their mechanical vibrations, has
been the focus of attention of many researchers during the
last 30 years.1–4 This scattering is similar to surface-
enhanced Raman scattering from molecules close to such a
metallic nanostructure1 making it an interesting complemen-
tary way to study this complex phenomenon having many
applications for very sensitive detection. The enhancement
due to using laser excitations resonant with the dipolar plas-
mon in such nanostructures and the high-quality samples
available today are responsible for low-frequency Raman
spectra having an unmatched number of features5 compared
to nonmetallic nanoparticles.

The interpretation of such spectra is very challenging as
many parameters have to be taken into account at the same
time. The mechanical vibrations depend on the shape of the
nanoparticles but also on their inner structure and on the
surrounding medium. In this work, we report on an approach
enabling taking into account all these parameters for a
spherical nanoparticle having a cubic lattice embedded in a
glass matrix.

The vibrational modes of an elastically isotropic sphere
which is free6 or embedded in an infinite isotropic matrix7,8

are known exactly. When the elastic constants are not isotro-
pic, a numerical approach such as the one known as resonant
ultrasound �RUS� �Ref. 9� can find mode frequencies and
displacement fields of free nanoparticles.10–12 What has been
missing up until now is a description of the vibrations of an
elastically anisotropic sphere embedded in an isotropic ma-
trix. The case of anisotropic elasticity has been discussed for
the problem of the scattering of acoustic waves13,14 but none
of these approaches provides the eigendisplacements re-
quired for modeling the coupling of the vibrations with elec-
trons which is at work in all the optical techniques used to
detect such vibrations.

Current experimental results such as those presented in
Ref. 5 have already shown the need for a model without any

of these limitations. The interpretation in that paper took into
account the elastic anisotropy to qualitatively explain the
splitting of the lowest frequency Raman peaks but it failed to
provide a quantitative description due to the significant cou-
pling with the embedding matrix. The present work fills that
hole by showing that it is possible to choose an isotropic
approximation of the system for the most intense Raman-
active vibrations which enables the prediction of the position
of the Raman peaks and provides the vibrational displace-
ment fields required for the calculation of the Raman inten-
sities.

II. METHOD

Exact solutions for the vibrations of isotropic free spheres
can be classified as spheroidal and torsional and will be
noted S�,m

n and T�,m
n , respectively, in the following with � and

m being the usual angular momentum and its z component
and n being an index used to label the eigenmodes by in-
creasing frequency starting from n=1 as in a previous
work.12 For spheres whose diameter is small compared to the
wavelength of light, the Raman-active vibrations are S0 and
S2 �for every m and n�.15 In the present work, RUS calcula-
tions have been used to model the vibrations of elastically
anisotropic spheres as in a previous work12 by expanding the
displacements onto xiyjzk functions with i+ j+k�20.

The approach of this paper was inspired by the calcula-
tions for elastically anisotropic cuboctaedra in Ref. 16. The
idea was to calculate mode frequencies using only the speed
of sound along a single propagation direction. The fivefold
degenerate S2

1 modes of an isotropic sphere are split by cubic
elasticity into two degenerate modes with Eg symmetry and
three with T2g symmetry �Oh point group�. Due to the sym-
metry of the displacements of the Eg and T2g vibrations, their
frequencies were approximated using sound speeds in par-
ticular directions instead of three-dimensional �3D�-averaged
ones. It should be noted that all the Eg and T2g vibrations �as
well as the A1g vibrations� are Raman active but only the
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ones sharing a strong similarity with the S2 modes are ex-
pected to contribute significantly to the Raman spectra due to
the surface-deformation scattering mechanism.4

In order to confirm the validity of this simple approach for
spherical nanoparticles, we use a method similar to the one
used in a previous work.17 Studying the frequency changes
resulting from a continuous variation in the elasticity of the
material the sphere is made of provides some insight into the
nature of the vibrations. A cubic material has three indepen-
dent elastic constants C11, C12, and C44 instead of two for
isotropic elasticity for which C44=

C11−C12

2 . We consider the
case of gold nanoparticles because of available inelastic
light-scattering experimental data to compare with and also
because gold has a very strong elastic anisotropy making it a
good system to test the validity of the isotropic approxima-
tions. We use the following parameters: C11=191 GPa, C12
=162 GPa, and C44=42.4 GPa and mass density �
=19.283 g cm−3. Since we are mainly interested in Raman-
active vibrations, we will focus on the vibrations coming
from the isotropic S2

1 mode which are the main features in the
low-frequency Raman spectra of gold nanoparticles.

The potential for a great simplification in handling these
modes, at least in some cases, can be clearly seen as follows.
We plot eigenfrequencies for a gold sphere as a function of
C44 in Fig. 1, instead of leaving C44 fixed at its normal value
for gold. The two lowest frequency Eg branches, i.e., the
fundamental mode and first overtone, are very nearly flat.
The frequency change for the lowest Eg branch is 2% while
C44 is multiplied by 4. This indicates that the corresponding
modes approximately do not depend on C44 or the associated
transverse sound speed. This approximate flatness is essential
to our approach. In practice, it only holds very well for the
lowest frequency modes and successively less well for higher
frequency. The projection of the displacements12 of the two
lowest frequency Eg vibrations obtained for �C44 /�
=1600 m /s onto those obtained for �C44 /�=800 m /s is
very close to 1 ��0.9968�. This demonstrates that the dis-
placement field of these modes do not significantly change

with C44 either. Since the mode approximately does not de-
pend on C44, we are free to arbitrarily change C44 to a dif-
ferent value which is convenient for us. Specifically, we can
always choose C44 to change the gold into an isotropic ma-
terial, i.e., C44=

C11−C12

2 .
The lowest frequency T2g modes depend on C44 as can be

seen by their frequency variations in Fig. 1. We also consider
the variation in their frequencies as a function of C11−C12 in
Fig. 2 while varying either C11 or C12 one at a time. There is
nearly perfect agreement in this figure between varying C11
or C12. It is also very good for vibrations having other irre-
ducible representations �not shown�. This demonstrates that
C11−C12 is a good choice for a parameter rather than C11
only or C12 only. Furthermore, the lowest frequency T2g vi-
brations which come from the S2

1 modes do not depend on

the corresponding transverse sound speed �C11−C12

2� as can be
seen by the almost flat variation. The small variation ob-
served near the value of gold is due to the anticrossing be-
tween the two lowest frequency T2g branches. While the low-
est branch is associated with the S2

1 mode, the next upper one
comes from T3

1 modes. Had a less anisotropic material been
chosen, this anticrossing pattern would have been less pro-
nounced. Still, as will be discussed later, neglecting the mix-
ings between these branches is a reasonable choice in many
cases.

In both cases, the mode-dependent isotropic approxima-
tion is obtained by satisfying C44=

C11−C12

2 . The displacements
associated with the mode-dependent isotropic approxima-
tions can be constructed using symmetry arguments18,11 from
the S2,m displacements. S2,0 and

S2,2+S2,−2
�2

are two orthonormal

Eg modes and
S2,2−S2,−2

�2
, S2,1, and S2,−1 are the three T2g ortho-

normal modes. As has been shown,17 the key parameter for
the calculation of the S2

1 modes is the transverse isotropic
sound speed although the longitudinal one has also a very
small contribution. Choosing the isotropic longitudinal sound
speed is not critical also due to the fact that the quasilongi-
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FIG. 1. �Color online� Variation in the eigenfrequencies of the
lowest frequency Eg �circles, red� and T2g �triangles, blue� vibra-
tions of a gold sphere of radius 5 nm when varying C44. The vertical
arrow indicates the real abscissa for gold and the vertical line cor-
responds to an isotropic system.
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FIG. 2. �Color online� Variation in the eigenfrequencies of the
Eg �circles for varying C12 and lines going through the circles for
varying C11, red� and T2g �triangles for varying C12 and lines going
through the triangles for varying C11, blue� vibrations of a gold
sphere of radius 5 nm as a function of C11−C12. The vertical arrow
indicates the real abscissa for gold and the vertical line corresponds
to an isotropic system.

SAVIOT et al. PHYSICAL REVIEW B 82, 115450 �2010�

115450-2



tudinal sound speed does not vary much with the propagation
direction in gold. As a result, we simply used the 3D-
averaged longitudinal sound speed as in previous works.
This value is also the most appropriate one for an isotropic
approximation of the breathing modes S0 as has been already
shown.12

III. APPLICATION

A. Free gold nanocrystals

Now the calculation of the eigenfrequencies of the modes
coming from the spheroidal quadrupolar vibrations �S2

1� for a
sphere made of a material with cubic elasticity is separated
into two isotropic problems which can each be solved ex-
actly. The result of such calculations for a gold sphere are
presented in the left part of Fig. 3 together with RUS calcu-
lations for varying anisotropy by using Cij�x�=Cij

iso+x�Cij
ani

−Cij
iso� with 0�x�1, x being the abscissa, Ciso being the

isotropic gold stiffness tensor obtained from the 3D-averaged
sound speeds, and Cani being the anisotropic one. The agree-
ment between both kinds of calculations for the lowest three
approximated branches is very good. The small deviation
from the lowest frequency T2g branch close to the “free an-
isotropic” limit can be attributed to the fact that the mixing
with the next T2g branch coming from T3

1 is taken into ac-
count only in the RUS calculation. This mixing has not yet
been observed experimentally �it should manifest as a split-
ting and intensity sharing between both branches�. But even
in that case, the frequency provided by the modified Lamb
approach can be seen as a good approximation of the posi-
tion of the expected Raman peak. As a result, this approach
provides a simpler description of the vibrations which is
quite suitable to interpret all the currently available experi-
mental results for free nanocrystals.

B. Matrix-embedded nanocrystals

Since the coupling with an embedding matrix can be
taken into account for a system having spherical symmetry,
the isotropic approximations presented before for free nano-
crystals can be extended to calculate the broadening and fre-
quency shifts due to a surrounding matrix. In the following,
we focus on calculations using the pseudomodes obtained
with the complex frequency model �CFM�.12 Other models
such as the core-shell model �CSM� �Ref. 12� would be more
suitable for the calculation of Raman spectra but will not be
considered here as we focus only on the positions of the
Raman bands. Details about the validity of the CFM ap-
proach using the isotropic approximations are presented in
Appendix.

CFM calculations are presented in Fig. 3 and compared to
the experimental spectra of gold nanocrystals in Fig. 4 and
Ref. 16. Figure 4 shows the Raman spectra of matrix-
embedded gold nanocrystals. Details about the sample prepa-
ration and the spectra acquisition are the same as those pre-
sented in Ref. 16 with a 64 h annealing at T=455 °C. Figure
4 focuses on the intense lowest frequency peak which has
been decomposed into a low-frequency Eg Lorentzian �posi-
tion 141.6�0.7 GHz, full width at half maximum �FWHM�
47.5�1.9 GHz� and a higher frequency T2g one �position
184.9�0.4 GHz, FWHM 63.7�1.2 GHz�.

Figure 3 �right� presents the evolution from free to
matrix-embedded gold nanocrystals by varying the param-
eters describing the matrix �mass density and longitudinal
and transverse sound speeds�. As discussed before, the cal-
culations are expected to be accurate only for the lowest Eg
and T2g branches but higher frequency branches are shown as
well for completeness. We used the parameters for the matrix
which were measured by Brillouin scattering in previous
works.5,16 On the right-hand side of Fig. 3, the frequency of
the Eg branch reaches 108.3 GHz �FWHM 21.7 GHz� while
the T2g one reaches 146.2 GHz �FWHM 30.4 GHz�. While
going from free to matrix-embedded nanoparticles, the ratio
of the Eg and T2g frequencies, which does not depend on the

0

50

100

150

200

250

300

free
isotropic

free
anisotropic

F
re

qu
en

cy
(G

H
z)

S2
1

S2
2

T3
1

matrix−embedded
anisotropic
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FIG. 4. �Color online� Low-frequency Raman spectrum for
matrix-embedded gold nanoparticles �crosses�. The fit of the intense
lowest frequency band by two Lorentzians and a constant back-
ground is shown with lines.
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size of the nanocrystals, changes from 0.59 to 0.74. Both
values are in very good agreement with the experimental
results presented here �ratio 0.77� and in Ref. 16 for embed-
ded gold nanocrystals16 as well as for free gold nanocrystals
�ratio 0.62 in Ref. 19�. This good agreement strongly sup-
ports the validity of the calculations based on the CFM and
using the isotropic approximations obtained for the free
spheres. Moreover, it enables the accurate determination of
the size of the nanocrystals using the inverse proportionality
of the eigenfrequencies with the diameter of the sphere.

A similar procedure was used to check the validity of our
approach with matrix-embedded copper nanoparticles since
copper crystallizes in a cubic structure too. Red Cu glasses
were produced in a similar fashion to the Au-based glasses
described in Ref. 16. By annealing near the glass transition
temperature an initially transparent sodo-silicate glass con-
taining minute quantities of both Cu2O and SnO, nanometric
clusters of metallic copper are formed. Based on a Maxwell
Garnett description, the volume content of Cu under the form
of nanoparticles is estimated as 10−5. Similar values are ex-
pected for the previous gold samples. Low-frequency Raman
spectra were recorded using a laser excitation close to the
surface-plasmon resonance maxima ��=561 nm for Cu in-
stead of �=532 nm for Au�. Due to the observed splitting of
the lowest frequency band, it is deduced that a substantial
fraction of the formed Cu nanoparticles are monodomain
nanocrystals. The density of the embedding glass is �
=2.43 g cm−3 and the longitudinal and transverse sound ve-
locities are, respectively, vL=5800 m /s and vT=3510 m /s,
as determined from Brillouin spectroscopy. Note that these
matrix parameters differ from those of the Au sample ��
=2.97 g cm−3, vL=5020 m /s, and vT=3010 m /s�.

The mass density and Cij’s for copper were obtained from
Ref. 20. For free monodomain copper nanocrystals, the cal-
culated ratio of the Eg to T2g frequencies is 0.56 and it in-
creases to 0.66 when embedded in the corresponding matrix.
The ratio deduced from the fit presented in Fig. 5 is 0.71.

It should be noted that, as clearly demonstrated
elsewhere,19 multiply-twinned particles also contribute to the

Raman spectra in the same frequency range through a
broader peak. The broadening of the Eg and T2g peaks for
matrix-embedded nanocrystals prevents the clear identifica-
tion of this additional contribution and therefore it is not
possible to reliably fit it. However, by not taking it into ac-
count, the positions of the Eg and T2g peaks are not very
accurate which may explain the disagreements between the
calculated and fitted ratios. For the same reason, the fitted
intensities and widths of both peaks are seriously affected by
the presence of such a third contribution. It is therefore im-
portant to restrict the usage of the fitting procedure used in
this work to obtain only relatively accurate positions for the
Eg to T2g peaks. These should of course not depend strongly
on the exact shape of the peaks �Lorentzian or Gaussian, for
example�.

Finally, an additional small peak at higher frequency can
be seen in the spectra presented in Figs. 4 and 5. Within the
isotropic approximation, this peak was assigned to the S2

2

degenerated modes.5 In the view of Fig. 3, i.e., accounting
for the elastic anisotropy and the embedding matrix, this
peak may tentatively be assigned to either the Eg modes de-
riving from the S2

3 vibrations or the T2g modes deriving from
the S2

2 modes. Since the latter modes are known to have a
very small surface deformation, their expected Raman scat-
tering cross section is expected to be negligible. Therefore
we assign this third small peak to the Eg modes deriving
from the S2

3 vibrations.

IV. CONCLUSION

We have demonstrated that full anisotropic calculations
are often not required to interpret low-frequency Raman
spectra from spherical nanoparticles with cubic elasticity. In-
stead, simpler isotropic calculations with properly chosen
sound speeds can provide approximate but accurate frequen-
cies for the most intense Raman-active vibrations and allow
to take into account the medium surrounding the nanocrys-
tals. Calculations have been successfully compared to ex-
perimental results for the case of monodomain gold and cop-
per nanoparticles in a glass matrix having isotropic elasticity.
While the effect of the elastic anisotropy on the frequencies
of the free vibrations was already known, the present work
demonstrates the measurable impact it also has on the fre-
quency splittings and the broadenings of the pseudomode for
matrix-embedded nanoparticles. Such is important for a reli-
able size evaluation of nanoparticles from their low-
frequency Raman spectra.
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FIG. 5. �Color online� Low-frequency Raman spectrum for
matrix-embedded copper nanoparticles �crosses�. The fit of the in-
tense lowest frequency band by two Lorentzians and a constant
background is shown with lines.

SAVIOT et al. PHYSICAL REVIEW B 82, 115450 �2010�

115450-4



APPENDIX: VALIDITY OF THE CFM USED WITH THE
ISOTROPIC APPROXIMATIONS

Let us consider a gold sphere of radius R0. In order to
apply the CFM approach to the case of spherical nanocrys-
tals having anisotropic elasticity, we have to check that the
displacement fields originally used in the isotropic CFM case
are still approximate solutions of the wave equation for the
anisotropic system for r�R0 provided the correct Cij’s are
used.

Without any loss of generality, let us first consider the Eg
modes similar to S2,0�m=0�. We already know that the iso-
tropic approximation presented before is valid for the lowest
two Eg modes. We write the frequencies of these modes as
	1= A

R0
and 	2= B

R0
with A�B in the following. This isotropic

approximation is valid whatever the radius of the gold sphere
and in particular for radii R
R0. For a given frequency 	
�

A
R0

, let us consider two particular spheres of radii RA= A
	

and RB= B
	 so that the first Eg mode of the first particle

and the second Eg mode of the second particle have
the same frequency 	. In the isotropic approximation,
these S2,0 displacements are linear combinations of two
terms: u�L=�� j2�kLr�P2�cos ��ei�t and u�T=�� ��� �r�j2�kLr�

�P2�cos ���ei�t, where j� and P� are the spherical Bessel
functions of the first kind and the Legendre polynomials,
respectively, and �=kLvL=kTvT. Since two independent lin-
ear combinations of the same fields �u�L and u�T� are approxi-
mate solutions of the wave equation, each field is an approxi-
mate solution too for r�R0. Therefore we have checked that
it is possible to apply the CFM approach in the frequency
domain 	�	1.

The matrix often increases the pseudomode frequencies
up to roughly 50% �i.e., roughly

	1+	2

2 � in the case of a very
hard and dense matrix. We want to apply the CFM in that
frequency range too. The fact that the calculations are also
valid for R�R0 is of no use here because it only demon-
strates that the S2,0 displacement field is a good approxima-
tion for the core of the sphere but nothing is known close to
r=R0. While we cannot extend this proof to 	
	1, we can-
not prove either that this approximation fails very quickly
when increasing 	 above 	1. For T2g modes, the situation is
also more problematic because the branch coming from S2

2

mixes significantly with other T2g branches coming from S4
1,

T5
1, and S6

1. Despite these limitations, applying the CFM can
be useful at least as a rough estimation of the pseudomodes
frequencies.
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